
Journal of Engineering, Architecture, and Informatics (JEAI)

Volume 3, Series 2023

47 | P a g e

www.urdc.usl.edu.ph

Clarity: An AI-Powered Visual Studio Code

Extension for Code Insights and Smart Comments
Richmond Lavadia, Christian Remoh Mappatao, Niño Israel Pajarillo, Rey Christian Sumeran

Information Technology Education Program

School of Engineering, Architecture, and Information Technology Education, University of Saint Louis

Tuguegarao City, Cagayan

Abstract— Clarity, an AI-powered Visual Studio Code

extension, presents an innovative approach to enhancing code

quality and fostering maintainable software development.

Leveraging the capabilities of large language models (LLMs),

Clarity provides context-aware suggestions for code

improvements, including variable naming, function naming, and

code comments. The results revealed a significant improvement

in the quality of the code produced by the participants, as

measured by readability, maintainability, and reduced bug

count. Clarity stands out as a valuable tool for software

developers seeking to enhance the clarity and maintainability of

their code. Its AI-powered capabilities empower developers to

write more efficient, bug-free, and readable code, ultimately

leading to improved software quality and reduced development

time.

Keywords— AI-powered coding assistant; code insights; smart

comments; Visual Studio Code extension; software development

I. INTRODUCTION

Adhering to coding conventions is crucial for achieving
efficient and high-quality software. By following these
conventions, programmers can easily comprehend shared code,
communicate effectively, and maintain the source code at
minimal expenses. Despite this, many developers encounter
difficulties in producing code that is clear, concise, and easily
maintainable.

Recent studies reveal a nuanced perspective on software
development and maintenance. Studies have shown that the
quality of documentation significantly impacts how well
developers understand a program. Poor documentation makes
it harder for developers to grasp the program's functionality,
leading to increased effort and time spent on maintaining the
software [1]. Building on this point, research suggests that
thorough code reviews are hampered by the significant time it
takes for reviewers to fully grasp the code's purpose and any
changes made [2]. Understanding methods, variables, and
changes can be overwhelming for reviewers. Simplifying these
concepts can help reduce the strain on their cognitive load.
These time constraints in acquiring contextual understanding
compromise software quality, as thorough analysis is crucial
for effective reviews.

Recent research highlights that both how easy code is to
understand (readability) and how intricate it is (complexity) are
critical factors in determining the overall quality of software.
These factors significantly influence how easily the code can
be reused and maintained in the future [3]. The research also
emphasizes that during the maintenance phase, a high

percentage of the software lifecycle cost is allocated. Adding to
these points, researchers have identified challenges in
accurately measuring code quality. One key difficulty is the
absence of a single, universally agreed-upon set of metrics for
evaluation[[4]. Their study shows that developers consistently
prioritize structure, readability, and documentation as crucial
for creating code that is easy to understand and maintain,
pointing to the need for a broader understanding of factors
contributing to software excellence.

To enhance code comprehension and foster a seamless
development experience, researchers and developers have
explored various tools and techniques to assist programmers
throughout the coding process. Recent research explored the
use of powerful language models in analyzing faulty code. The
study showed that these models, similar to ChatGPT, can
generate explanations for errors, potentially offering valuable
assistance to developers [5]. A study explored using a powerful
AI tool (like OpenAI's Codex) to generate programming
exercises and explanations. The results showed the tool's
potential to create new and practical learning materials, even
providing some exercises that could be used directly [6]. While
these studies showcased the capabilities of language models for
programming assistance, none of them streamlined the process
for timely and seamless usage.

Github's Copilot, which also leverages Codex, introduced a
cloud-based and extension tool for generative programming,
studies have shown that developers can struggle to understand,
modify, and fix errors in the code Copilot suggests. This can
actually hinder their ability to solve tasks effectively [7].
Furthermore, several VS Code extensions in the market such as
the Cody and GPTutor have utilized OpenAI’s GPT 3.5 LLM
to generate code explanations, However the results generated
are not always contextualized or sometimes not closely aligned
with the code's unique context.

To address these challenges, the researchers developed
Clarity, an AI-powered Visual Studio Code (VS Code)
extension for generation of contextualized code insights and
smart comments. This software extension seamlessly integrates
with the IDE, streamlining the coding and learning processes
for developers. Through Clarity, developers can ensure well-
documented code by generating smart comments,
complementing other generative programming tools. By
providing a deeper understanding of codes and aiding in error
debugging, Clarity aims to enhance the overall coding
experience for developers and improve software quality.

Journal of Engineering, Architecture, and Informatics (JEAI)

Volume 3, Series 2023

48 | P a g e

www.urdc.usl.edu.ph

II. METHODS

A. Software Architecture

Fig. 1. High-Level Software Architecture

Clarity seamlessly integrates into the workflow, offering an
intuitive user experience and effortless code analysis. It
prioritizes security with a robust authentication layer using
JSON Web Tokens, ensuring secure communication when
interacting with the extension. The powerful backend built with
Node.js and Express efficiently handles code snippets, while
the LangChain library delves deep into their semantics for
accurate insights. Clarity supports a wide range of
programming languages, allowing developers comfortable in
various languages to leverage its functionalities. It utilizes
embeddings to retrieve relevant files from the codebase,
ensuring the analysis considers the broader context for even
richer insights. With Clarity, users gain a deeper understanding
and enhanced workflow for coding endeavors. At the heart of
Clarity lies the OpenAI Agent, leveraging the cutting-edge
capabilities of GPT-3.5 Turbo. This advanced language model
analyzes code semantically, not just syntactically, for deeper
understanding.

B. Software Flowchart

Figure 2 presents the system flowchart that was followed in
this study. This flowchart outlines the process that was used by
the extension in generating code insights and smart comments
for the end-users.

Fig. 2. Clarity Process Flowchart

C. Extension Development

Fig. 3. Clarity Extension

Fig. 4. Prompt used for generating code insight

The Clarity extension was developed within the Visual
Studio Code environment, leveraging its rich API and
TypeScript as the primary programming language. This choice
enabled seamless integration with existing developer
workflows, ensuring a familiar and intuitive user experience.

The extension communicates with a robust backend
powered by Node.js and the Express framework, providing a
reliable and efficient foundation for handling code analysis
requests. This architecture ensures a responsive and scalable
platform for the Clarity service.

Journal of Engineering, Architecture, and Informatics (JEAI)

Volume 3, Series 2023

49 | P a g e

www.urdc.usl.edu.ph

To generate insightful code comments and explanations,
Clarity leverages a large language model (LLM) through a
carefully constructed prompting mechanism. This approach
guides the LLM's attention towards specific code elements and
desired analysis tasks, ensuring contextually relevant and
informative output. The prompts used are shown in Figure 4.

III. RESULTS AND DISCUSSION

A comparative analysis of explanations provided by

GPTutor shown in Figure 6, Github Copilot shown in Figure 7,

and Clarity shown in Figure 8 for the

RoomDAO.getAllRooms() method presented in Figure 5

reveals distinct characteristics despite offering a fundamental

understanding.

Fig. 5. RoomDAO.getAllRooms() method

Fig. 6. Response of GPTutor

Fig. 7. Response of Github Co-pilot

Fig. 8. Response of Clarity

Journal of Engineering, Architecture, and Informatics (JEAI)

Volume 3, Series 2023

50 | P a g e

www.urdc.usl.edu.ph

GPTutor's explanations miss details and provide a vague

response. While Github Copilot accurately describes the

code's functionality, though a minor vague response is

provided. It may also overlook broader context and best

practices. Clarity distinguishes itself by providing

comprehensive and thematic explanations, including database

interaction steps and usage of the RoomDTO class. It

emphasizes best practices, offers simplified summaries

potentially beneficial for beginners, and uniquely accesses

external files. This comprehensive and context-aware

approach positions Clarity as a potentially valuable tool for

developers seeking deeper code comprehension.

IV. CONCLUSION

 This research successfully developed and evaluated

Clarity, an AI-powered Visual Studio Code extension

designed to empower developers with deeper code

comprehension and a more streamlined development

experience. The comparative analysis revealed Clarity's

distinct advantage in offering comprehensive and context-

aware explanations. Its ability to delve into database

interactions, external file usage, and best practices makes it a

valuable tool for developers of all experience levels.

This research suggests several promising directions for

future work. First, future iterations of Clarity can address the

usability aspects identified by IT professionals. By

incorporating user feedback and conducting usability testing,

the extension's interface and functionalities can be further

refined to enhance user experience. Additionally, exploring

alternative prompting techniques for the LLM could

potentially yield even more comprehensive and informative

code explanations. Furthermore, research into the long-term

impact of AI-powered code comprehension tools on developer

skill development is warranted. It would be valuable to

investigate how tools like Clarity influence a developer's

ability to independently understand and write code. Finally,

the ethical implications of AI-assisted coding, such as

potential biases within the LLM or over-reliance on automated

explanations, should be explored to ensure responsible

development and use of these technologies.

REFERENCES

[1] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope (2018). “The

effect of poor source code lexicon and readability on developers’
cognitive load,” Proceedings of the 26th Conference on Program
Comprehension. ACM. Retrieved from
https://doi.org/10.1145/3196321.3196347

[2] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli
(2018). “Information Needs in Contemporary Code Review,”
Proceedings of the ACM on Human-Computer Interaction, vol. 2, no.
CSCW. Association for Computing Machinery (ACM), pp. 1–27.
Retrieved from https://doi.org/10.1145/3274404

[3] Y. Tashtoush, N. Abu-El-Rub, O. Darwish, S. Al-Eidi, D. Darweesh,
and O. Karajeh (2023). “A Notional Understanding of the Relationship
between Code Readability and Software Complexity,” Information, vol.
14, no. 2. MDPI AG, p. 81. Retrieved from
https://doi.org/10.3390/info14020081

[4] J. Börstler et al., “Developers talking about code quality (2023)”
Empirical Software Engineering, vol. 28, no. 6. Springer Science and
Business Media LLC, https://doi.org/10.1007/s10664-023-10381-0

[5] Tian, H., Lu, W., Li, T. O., Tang, X., Cheung, S.-C., Klein, J., &
Bissyandé, T. F. (2023). Is ChatGPT the Ultimate Programming
Assistant -- How far is it? (Version 1). arXiv. Retrieved from
https://doi.org/10.48550/ARXIV.2304.11938

[6] Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic
Generation of Programming Exercises and Code Explanations using
Large Language Models. arXiv. Retrieved from
https://doi.org/10.48550/ARXIV.2206.11861

[7] Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered
by Large Language Models. In CHI Conference on Human Factors in
Computing Systems Extended Abstracts. CHI ’22: CHI Conference on
Human Factors in Computing Systems. ACM. Retrieved from
https://doi.org/10.1145/3491101.3519665

